Hydrology signal from GRACE gravity data in the Nelson River basin, Canada: a comparison of two approaches
نویسندگان
چکیده
The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the combined gravity signal of several overlapping processes. A common approach to separate the hydrological signal in previous ice-covered regions is to apply numerical models to simulate the glacial isostatic adjustment (GIA) signals related to the vanished ice load and then remove them from the observed GRACE data. However, the results of this method are strongly affected by the uncertainties of the ice and viscosity models of GIA. To avoid this, Wang et al. (Nat Geosci 6(1):38–42, 2013. https:// doi.org/10.1038/NGEO1652; Geodesy Geodyn 6(4):267–273, 2015) followed the theory of Wahr et al. (Geophys Res Lett 22(8):977–980, 1995) and isolated water storage changes from GRACE in North America and Scandinavia with the help of Global Positioning System (GPS) data. Lambert et al. (Postglacial rebound and total water storage variations in the Nelson River drainage basin: a gravity GPS Study, Geological Survey of Canada Open File, 7317, 2013a, Geophys Res Lett 40(23):6118–6122, https://doi.org/10.1002/2013GL057973, 2013b) did a similar study for the Nelson River basin in North America but applying GPS and absolute gravity measurements. However, the results of the two studies in the Nelson River basin differ largely, especially for the magnitude of the hydrology signal which differs about 35%. Through detailed comparison and analysis of the input data, data post-processing techniques, methods and results of these two works, we find that the different GRACE data post-processing techniques may lead to this difference. Also the GRACE input has a larger effect on the hydrology signal amplitude than the GPS input in the Nelson River basin due to the relatively small uplift signal in this region. Meanwhile, the influence of the value of α, which represents the ratio between GIA-induced uplift rate and GIA-induced gravity-rate-of-change (before the correction for surface uplift), is more obvious in areas with high vertical uplift, but is smaller in the Nelson River basin. From Gaussian filtering of simulated data, we found that the magnitude of the peak gravity signal value can decrease significantly after Gaussian filtering with large average radius filter, but the effect in the Nelson River basin is rather small. More work is needed to understand the effect of amplitude restoration in the post-processing of GRACE g-dot signal. However, it is encouraging to find that both the methodologies of Wang et al. (2013, 2015) and Lambert et al. (2013a, b) can produce very similar results if their inputs are the same. This means that their methodologies can be applied to study the hydrology in other areas that are also affected by GIA provided that the effects of post-processing of their inputs are under control.
منابع مشابه
Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China
Water storage change has implications not only for the hydrological cycle, but also for sustainable water resource management in especially semi-arid river basins. Satellite/remote sensing techniques have gained increasing application in monitoring basin and regional hydrological processes in recent decades. In this study, the latest version of GRACE (Gravity Recovery and Climate Experiment) is...
متن کاملInterannual variability in water storage over 2003 - 2007 in the Amazon Basin 2 from GRACE space gravimetry , in situ river level 3 and precipitation data
27 We investigate the interannual variability over 2003-2007 of different hydrological parameters in 28 the Amazon river basin: vertically-integrated water storage from the GRACE space gravimetry 29 mission, surface water level over the Amazon River and its tributaries from in situ gauges, and 30 precipitation. We analyze the spatio-temporal evolution of total water storage from GRACE and 31 in...
متن کاملInterannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data
27 We investigate the interannual variability over 2003-2007 of different hydrological parameters in 28 the Amazon river basin: vertically-integrated water storage from the GRACE space gravimetry 29 mission, surface water level over the Amazon River and its tributaries from in situ gauges, and 30 precipitation. We analyze the spatio-temporal evolution of total water storage from GRACE and 31 in...
متن کاملComparison of two model approaches in the Zambezi river basin with regard to model reliability and identifiability
Variations of water stocks in the upper Zambezi river basin have been determined by 2 different hydrological modelling approaches. The purpose was to provide preliminary terrestrial storage estimates in the upper Zambezi, which will be compared with estimates derived from the Gravity Recovery And Climate Experiment (GRACE) in a future study. The first modelling approach is GIS-based, distribute...
متن کاملWavelet analysis of GRACE K-band range rate measurements related to Urmia Basin
Space-borne gravity data from Gravity Recovery and Climate Experiment (GRACE), as well as some other in situ and remotely sensed satellite data have been used to determine water storage changes in Lake Urmia Basin (Iran). As usual, the GRACE products are derived from precise inter-satellite range rate measurements converted to different formats such as spherical harmonic coefficients and equiva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018